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Motivation 
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 Driver Assistance:   Needs distance of each object (to brake before collision) 

 Embedded system: Real-time (>= 20 Frames Per Second) & low energy consumption 



Stereo Vision: cameras 
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 Infer depth of each pixel using two cameras (stereo pair) 

 Reconstruct 3D world 



Why GPU? 
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 More GFLOPS, more Memory Bandwidth & low Energy consumption 

 Needs Massive Parallelism: found in many Computer Vision algorithms 



Research Goals 
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 Identify and develop appropriate algorithms to reconstruct 3D world of objects from  
   2 images taken from cameras 

 

 Design and implement massively parallel schemes and data layouts for execution in  
   accelerators (GPUs) to achieve real-time and low energy consumption 

 

 Propose and apply methodology for developing massively parallel algorithms; 
identify most common parallel execution patterns and generalize adequate strategies 
for efficient implementation 



Index 

Motivation 

6 

Stereo matching & Semi-Global 
Matching (SGM) 

Massively-Parallel Algorithm 
Design 

Results 

Conclusions & Future work 



Stereo Vision Pipeline 
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Calibration 

Camera Calibration 
Focal length, image 
center, Rotation & 

translation, … 

Rectification 

Image Rectification 
Make images parallel & 
remove lens distortion 

Stereo Matching 

Stereo Matching 
Compare pixels in 

both images to infer 
disparity 

Triangulation 

3D reconstruction 
Extract 3D points from 

disparity 



Stereo Vision: Overview 
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 Disparity: distance between the x position in the left and right image   
   Near objects = higher disparity    Far objects = lower disparity 

 Epipolar geometry limits the search to 1 dimension 

Epipolar 
line 

Left camera 
Optical center 

Right camera 
Optical center 

𝐼𝐵𝐵𝐵𝐵   

𝐼𝑀𝑀𝑀𝑀𝑀   



Stereo Matching: Find pixel along epipolar line 
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y 

Maximum 
disparity 

Problem: 
Find pixel px,y from Base Image (Left) into Matching Image (Right) 

 
Only at the left along epipolar line 

Left Image = Base Image Right Image = Matching Image 

x x 



 Stereo Matching: General Scheme 
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Left Image = Base Image Right Image = Matching Image 

x x 

y 

Window Size 
R×R 

• Support window:     reduces ambiguity 
• Preprocessing + Cost function:  compensates for photometric distortions 

c(x): Cost function 
Sum of Absolute or Squared or Truncated 
Absolute Differences, Mutual Information, 

Hamming Distance 
 

c 

p p 

p(x): Preprocessing function 
Laplacian of Gaussian, Bilateral filtering, 

Rank transform, Census transform 
 

matching cost  



 Stereo Matching: Computing Disparity  
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Left Image = Base Image Right Image = Matching Image 

100 85 95 12 69 46 32 112 95 99 

d: Disparity 

d=0         …             Dmax 

c 

p p 

matching cost  

? 



Stereo Matching: Local algorithm 
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? 
Consider global 

information 
 

Decision depends on 
neighbors 

100 85 95 12 69 46 32 112 95 99 32 

Local method  
 disparity d is index with  
 minimum cost 

A better candidate? 
d  
 



Stereo Matching: Global algorithm 
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( ) ( ) ( )DE+DE=DE smoothdata

Global algorithm 
 
Key assumption:    Changes in distance are smooth 
 
Define energy function over images and minimize it 
 
 
 

Problem: Global minimization in 2D is NP-Complete 
 

But, there is a faster option … 
 

Considers neighbor pixels Local Cost 



Stereo Matching: Semi-Global Matching (SGM) 
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SGM:  

 add smoothing penalties along several directions in 1D  (dynamic programming method) 

 aggregate penalties from all directions and minimize 

 similar accuracy of global algorithms, but lower computational complexity 



SGM: Smoothness function 
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Matching cost Smoothness Penalty 

Small changes 

Big changes 

No changes 

 Key idea: Penalize abrupt changes 
 Penalty for small changes:  considers slanted or curved surfaces 
 Penalty for bigger changes:  considers boundaries of real objects 

Recurrence 



Semi-global matching: Visual Example 
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Direction 

1.6 m 

204 m 

3.19 m 



Visual Example: effect of using different path directions 
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Direction Direction 

Direction Direction 



Visual Example: Effect of Aggregation 
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+ + + 

 Aggregation on all directions provides more robust results 



Index 

Motivation 

19 

Stereo matching & Semi-Global 
Matching (SGM) 

Massively-Parallel Algorithm 
Design 

Results 

Conclusions & Future work 



Massively Parallel Programming: Methodology 
20 

1. Identify massive parallelism & parallel patterns (Map, Reduce, Recurrence ...) 

2. Propose work distribution into blocks of threads 

3. Analyze global memory access 

• estimate arithmetic intensity 
• consider data reuse strategies 

4. Design language-independent pseudocode 

5. Translate to CUDA (or OpenCL, OpenACC … ) 

 



Pipeline: Host and Device mapping 
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DEVICE (GPU) HOST 
(CPU) 

HOST 
(CPU) 

…
 

Matching Cost  
Computation (Local) 

Input: 
Left and 
Right 
Images 

Cost  Aggregation 
(SGM) 

Disparity  
Computation 

Output: 
Disparity 
Image 

Matching 
Cost 

Smoothed 
Cost 

 Complete stereo matching pipeline implemented on GPU (accelerator) 



CSCT Transform 
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 Rationale: invariant to local intensity changes & tolerant to outliers 
 Encode local neighborhood around each pixel into bit-vector  
   9x7 window (31-bit result) 

1 1 1 
0 

50 61 66 
32 50 50 
12 12 10 

…
 



CSCT Transform: task distribution & performance analysis 
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1.  2D Stencil-pattern: parallelism in x & y axis 

2.  Naïve scheme: embarrasingly parallel (per-thread) 

Input Image 
H 

W 

CSCT Image 

H, W: image dimensions 

CSCT   stencil 

Parallelization Scheme Naïve 
Thread Parallelism (per image) W×H 

Compute Work per thread 62 ops 
Total Global Data Read (Bytes) 62×W×H 

Total Global Data Written (Bytes) 4×W×H 

…
 

per-thread 

y 
x 

9x7 window 

Arithmetic Intensity: 
 62 ops / (62+4) Bytes 



CSCT Transform: task distribution & performance analysis (2) 
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1. 2D Stencil-pattern: parallelism in x & y axis 

2. 2D input data tile: cooperative read ( per CTA ) 
     Data reuse from shared memory ( per thread ) 

Input Image 
H 

W 

CSCT Image 

Shared 
Memory: 

H, W: image dimensions 

CSCT   stencil 

Parallelization Scheme Naïve 2D-tiled 
Thread Parallelism (per image) W×H W×H 

Compute Work per thread 62 ops 62 ops 
Total Global Data Read (Bytes) 62×W×H ≈ 1.5×W×H 

Total Global Data Written (Bytes) 4×W×H 4×W×H 

…
 

per-CTA  

y 
x 

Arithmetic Intensity: 
 62 ops / 5,5 Bytes 



CSCT Transform: pseudocode 
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…
 

per-CTA cooperative read  

per-thread computation,  
reuse data from shared memory 



Matching Cost: task distribution & performance analysis 
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1. 2D to 3D pattern: parallelism in x, y & d axis 

2. Naïve scheme: embarrasingly parallel (per-thread) 

CSCTmatch 

CSCTbase 

⊕  BitCount 

H, W: image dimensions 
D: maximum disparity 

D 

Matching 
Cost (MC) 

Hamming  Distance 

…
 

y x 

d 

Parallelization Scheme Naïve 
Thread Parallelism W×H×D 

Compute Work per thread 2 ops 
Total Global Data Read (Bytes) 8×W×H×D 

Total Global Data Written (Bytes) W×H×D 

Arithmetic Intensity: 
 1 op / (8+1) Bytes 



Matching Cost: task distribution & performance analysis (2) 
27 

1. 2D to 3D pattern: parallelism in x, y & d axis 

2. Increase work per thread to D output results (reduce parallelism) 

    1D input data tile: cooperative read ( per CTA ) 

    Data reuse from shared memory ( per thread ) 

Parallelization Scheme Naïve 1D-tiled 
Thread Parallelism W×H×D W×H 

Compute Work per thread 2 ops 2D ops 
Total Global Data Read (Bytes) 8×W×H×D 12×W×H 

Total Global Data Written (Bytes) W×H×D W×H×D 

CSCTmatch 

CSCTbase 
Shared 
Mem. 

⊕  BitCount 

H, W: image dimensions 
D: maximum disparity 

D 

Matching 
Cost (MC) 

D 

2×D D Hamming  Distance 

…
 

y x 

d 

Arithmetic Intensity: 
2D ops / (12+D) Bytes 



SGM Cost Aggregation: path direction ↓ 
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1. Parallelism in x axis + Recurrent pattern in y axis +  
     3-1 stencil and minimum reduction in d axis 

2. 1D CTA arrangement:  
   stencil communication (SharedM) & cooperative minimum reduction 

SharedMem 
H, W: image dimensions 
D: maximum disparity 

MC 
y 

d 

x 

L↓ 

x 
SGM   stencil 

minimum 

… … 

…
 

Parallelization Scheme Recurrent 
Thread Parallelism W×D 

Compute Work per thread k×H ops 
Total Global Data Read (Bytes) H×W×D 

Total Global Data Written (Bytes) H×W×D 

↓ 

Arithmetic Intensity: 
 kH ops / 2H Bytes 



SGM aggregation and Disparity Computation 
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1. 3D addition to 3D: parallelism in x, y and d axis 

    3D to 2D (d axis) reduction pattern (minimum) 

H, W: image dimensions        
     D: maximum disparity 
  ND: Number of path Directions 

+ minimum 
y 

Disparity 

x 

... 
…

 

L↑   L←  L    L   
 

L↓ L→ 



SGM aggregation and Disparity Computation (2) 
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1.  3D to 2D (d axis) reduction pattern: parallelism in x & y axis 

2.  1D CTA arrangement:  cooperative minimum reduction 

SharedMem 

H, W: image dimensions        
     D: maximum disparity 
  ND: Number of path Directions 

y 

d 

x 
Add & 

Reduce 

minimum 

x 

y 
Disparity 

x 

... 
…

 

L↑   L←  L    L   
 

L↓ L→ Parallelization Scheme reduction 
Thread Parallelism W×H×D 

Compute Work per thread ND ops 
Total Global Data Read (Bytes) ND×H×W×D 

Total Global Data Written (Bytes) H×W 

Arithmetic Intensity: 
 ND ops / ND Bytes 



Additional Optimizations 
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 Fused: Last path + Disparity Computation (1.35× speed up) 

 Fused: Matching Cost + horizontal path directions (1.13× speed up) 

• CTA-to-Warp conversion (Kepler architecture and newer): 

• avoids shared memory by using fast register-to-register communication (shuffle) 

• reduces instruction count and increases instruction parallelism 

• Vectorize Cost Aggregation inner loop: compute 4 costs at the same time (3× speed up) 

 

…
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Experimental Methodology 
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• Metrics: 
 Performance=  Frames Per Second (fps) 
 Energy Efficiency= fps / Watt 
 Detailed performance per kernel: Instruction Count, Memory Bandwidth & IPC 

 Images stored in memory 

NVIDIA Titan X 
Cores: 3072 
Peak Bandwidth: 336.5 GB/s 
TDP 250 W 

NVIDIA Tegra X1 
Cores: 256 
Peak Bandwidth: 25.6 GB/s 
TDP 10 W 



Results: Accuracy & Performance 
37 

 Accuracy reduced very slightly with 4 SGM path directions with respect to 8 SGM path directions  

 Real-time on Tegra X1 is achieved for 4 SGM path directions on images of 1280x480 pixels 

0

10

20

30

40

50

60

70

80

90

ND=2 ND= 4 ND= 8

TEGRA X1: Performance (Frames/Second, fps) 

640x480
1280x480
1280x960

ND = 8 
94.12% 

ND = 4 
93.96% 

ND = 2 
91.09% 

Accuracy (ND: # of SGM Path Directions) 

real-time 

Image size (W×H) 

D= 128 (maximum disparity level) 

# SGM path directions 



Results: comparison with Titan X  
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 Titan X GPU provides more than 10×     
    the performance of Tegra X1 

 Tegra X1 offers more than 2×  
    performance per Watt 

 

W×H = 640×480  
D= 128 

# path directions 
ND= 2 
ND= 4 
ND= 8 

Performance 

Energy Efficiency 
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Conclusions & Future work 
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 Low-consumption embedded GPU systems (Tegra X1) are capable of attaining 
real-time stereo 

 

 We have proposed baseline parallel schemes and data layouts that follow 
general optimization rules 

 

 Evaluate performance on the new embedded Pascal GPUs with larger images 
and a higher number of disparity levels 

 

 Include and evaluate well-known post-filtering algorithms: 

 Left-Right Consistency Check 

 Subpixel Estimation 

 Adaptive P2 
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