A Multi-Hypothesis Approach to Color Constancy

Daniel Hernandez-Juarez!, Sarah Parisot!?, Benjamin Busam!3, Ale$ Leonardis!, Gregory Slabaugh! and Steven McDonagh'

Huawei Noah's Ark Lab?

dhernandez0OQgmail.com, steven.mcdonagh@huawei.co

Mila Montréal?

Technical University of Munich’

SEATTLE

WASHINGTON
JUNE 16-18 2020

CVPR

Introduction Angular-Error statistics (lower better)
Overview
e Color constancy: the ability to account for scene light source color Method Mean Median Trimean Best 25% Worst 25%
. . . . . One model per device
o ﬁdlows textractlon oftcolol.r—lomblasekd surface information, essential for . FFCC 3] (model Q) 2.37 | 1.50 1 69 0.46 = 76
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- ?{tl s Multi-device training
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E - “: B Table: Angular error for NUS data set using multi-device cross-validation folds
; 0.2 - i, Method Mean Median Trimean Best 25% Worst 25%
B C A+ FFCC |3| (model J) 2.10  1.23 1.34 0.47 5.38
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e Neural networks provide state-of-the-art performance for estimation of _H_ﬁ/ *@‘E . Z Wi(p—1 Table: Angular error for Cube challenge data set
N 5L 0; £* = ) ¢;-softmax(G, * fV (€71 -Y )+ B,)
scene illuminant £ L L ?i L ti
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e Problem 1: regression to illuminant point estimates do not account for
multiple plausible solutions 0; Training-free camera adaptation
e Problem 2: state-of-the-art learning methods are often camera-dependent CT ) | | |
yet labelled datasets are expensive to collect and typically small 1 Y) B 5 I = arCCOS( 4 4 ) o [rain using amalgamated NU5 and Gehler-5hi datasets
n - — n — -
e Proposal: a multi-hypothesis strategy to handle color constancy “ paT ” ” p* H e Select candidates from Cube+ and test on separate Cube challenge datasets

ambiguity and afford camera-agnostic training e No test camera imagery seen during training

Contributions Method Mean Med. Tri. Best 25% Worst 25%
Afifi et al 2019 [1] 2.80 1.72 - 0.71 7.06
. . . .. Ours 207 131 143 041 5.12
* Decompose the problem: multi-hypothesis three stage approach Bayesmn formulation Multi-camera trammg Table: Angular error for Cube challenge trained solely on NUS and Gehler-Shi. Candidate

. . . selection from separate Cube+ dataset
e Multi-camera learning strategy that improves accuracy over

e Idea: account for unknown surface reflectances and scene illuminant using e Model " provides likelihood o; that an image is well white balanced: a

device-independent learning task

single-camera training

a probabilistic generative model

e Training-free model adaptation to new capture devices Qualitative results

e Model the posterior distribution of illuminants £, given the input image Y:
e [[luminant candidates are camera-specific yet the strategy allows updating

e Fast method that achieves state-of-the-art accuracy of a single set of model parameters W during training

(b) Our prediction (¢) Ground Truth

(a) Input image

P(Y | £)P(£)
| PLIY) = =5
Modelling Color Constancy (Y)

e Typically small color constancy training sets can be amalgamated across
capture devices towards larger data improving " prediction quality

Assumption: the scene is illuminated by a single or dominant light source o Assuming illuminant and surtace reflectance are independent allows

decomposition and separate modelling of the factors

Goal: given input image Y, estimate the global illumination color

e Model the likelihood of an observed image Y, given illuminant £ as: Error: 0.03°

Single camera training

FFCC
(a) error: 8.92°

o Let y = (yr, Yy, Yp) be a pixel from image Y in linear RGB space
Our method

P(Y |£)=[P(Y | R=r)P(R=r)dr=P(R = diag(£)"'Y)
: (b) error: 9.07°

e Model pixel observations as the product of surface reflectance
r = (r,, 74 1p) and global illuminant £ = (¢,,¢,, {}):

P(Y | £, R =) only non-zero for R = diag(£)™'Y

gk =1kl for ke{r,g,b}. " . |
e Intuition: The likelihood rates whether an image, corrected under £,
| looks realistic in terms of achromaticity s e B o e B S
e Estimate £ in order to recover surface reflectances R = diag(£)~'Y | | " e Truth
e Estimate £° by optimising the quadratic cost (min. MSE Bayesian ' "
e [nables generation of identical content yet achromatic appearance estimator)
But. Error: 14.62°
ut. 0= /ef ' P(E ‘ Y) dl Gehler-Shi test images. Results sorted by increasing angular-error and sampled uniformly to

: : L. . . select displayed images
e Ill-posed problem: infinitely many combinations of illuminant and

surface reflectance can generate an identical pixel observation

Method instantiation:

® Sclect a representative set of n candidate illuminants e.qg. cluster
training set illuminant labels £

e Point estimates for £ do not offer any information regarding likely References

alternative solutions

® Cenerate n illuminant-corrected images £€; ' - Y. Train model f" to
estimate the likelihood o; that £; ' - Y exhibits an achromatic light source
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e Directly estimating £ is inherently camera-specific due to camera spectral

sensitivities ® Linearly combine candidate illuminants £;, weighted by estimated

posterior probabilities, to produce final illuminant estimate £
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Multiple camera training
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