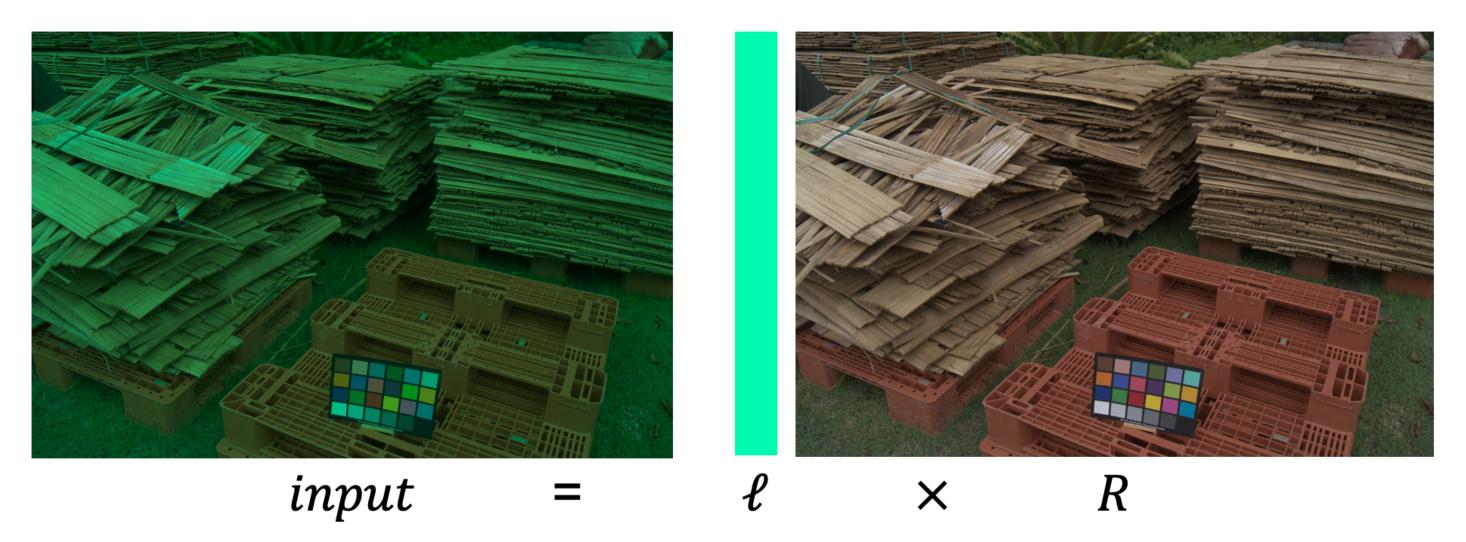


Introduction

- Color constancy: the ability to account for scene light source color
- Allows extraction of color-unbiased surface information, essential for down-stream computer vision tasks



- Neural networks provide state-of-the-art performance for estimation of scene illuminant ℓ
- **Problem 1**: regression to illuminant point estimates do not account for multiple *plausible* solutions
- **Problem 2**: state-of-the-art learning methods are often camera-dependent yet labelled datasets are expensive to collect and typically small
- **Proposal**: a **multi-hypothesis strategy** to handle color constancy ambiguity and afford camera-agnostic training

Contributions

- Decompose the problem: **multi-hypothesis three stage** approach
- Multi-camera learning strategy that improves accuracy over single-camera training
- **Training-free** model adaptation to new capture devices
- Fast method that achieves state-of-the-art accuracy

Modelling Color Constancy

Assumption: the scene is illuminated by a single or dominant light source **Goal**: given input image Y, estimate the global illumination color

- Let $\mathbf{y} = (y_r, y_q, y_b)$ be a pixel from image Y in linear RGB space
- Model pixel observations as the product of surface reflectance $\mathbf{r} = (r_r, r_q, r_b)$ and global illuminant $\boldsymbol{\ell} = (\ell_r, \ell_q, \ell_b)$:

$$y_k = r_k \cdot \ell_k \quad \text{for } k \in \{r, g, b\}.$$

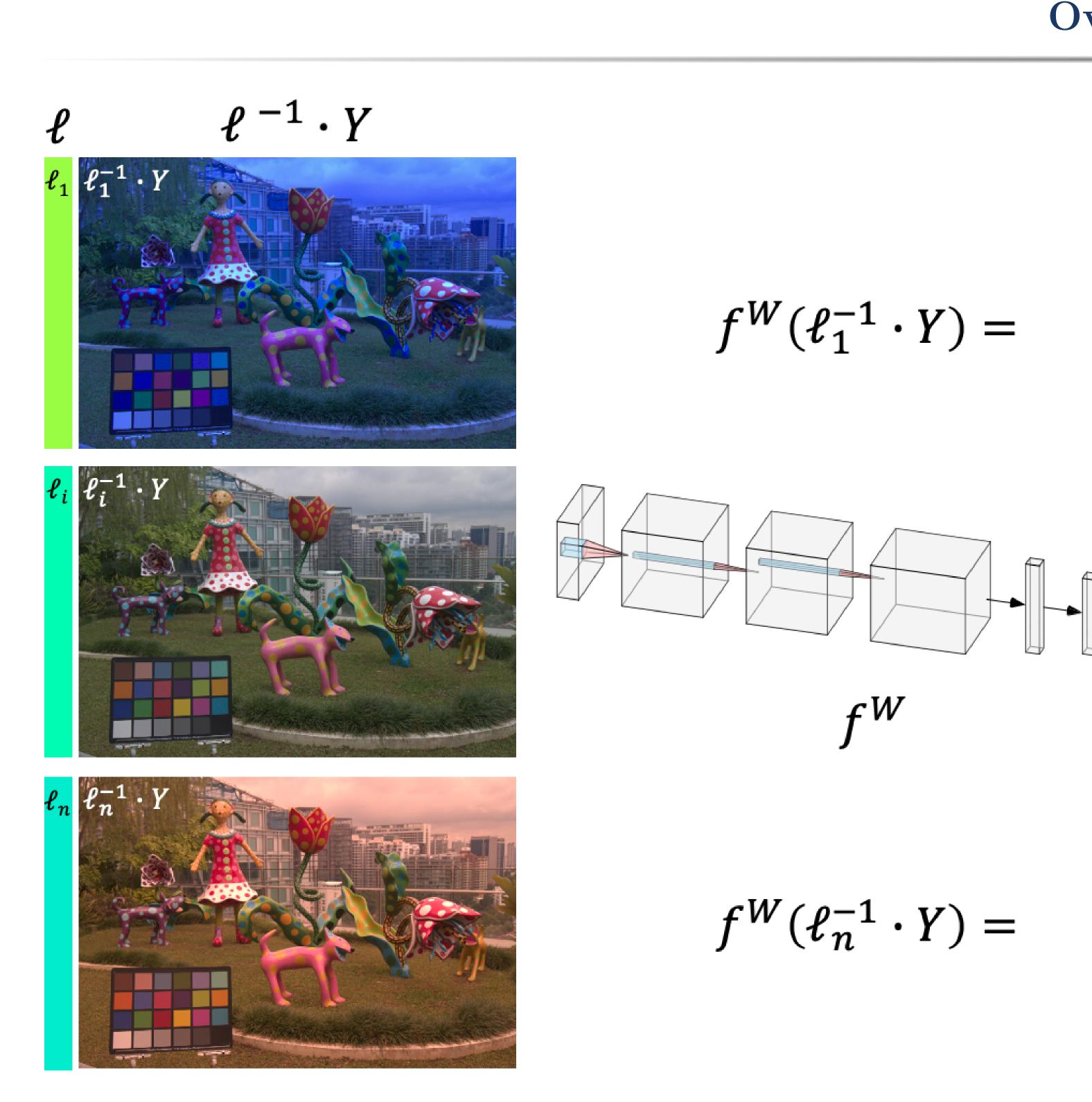
- Estimate $\boldsymbol{\ell}$ in order to recover surface reflectances $R = \operatorname{diag}(\boldsymbol{\ell})^{-1}Y$
- Enables generation of identical content yet **achromatic** appearance

But:

- **Ill-posed problem:** *infinitely many* combinations of illuminant and surface reflectance can generate an *identical* pixel observation
- Point estimates for ℓ do not offer any information regarding likely alternative solutions
- Directly estimating ℓ is inherently camera-specific due to camera spectral sensitivities

A Multi-Hypothesis Approach to Color Constancy

Daniel Hernandez-Juarez¹, Sarah Parisot^{1,2}, Benjamin Busam^{1,3}, Aleš Leonardis¹, Gregory Slabaugh¹ and Steven McDonagh¹ Huawei Noah's Ark Lab¹ Mila Montréal² Technical University of Munich³ dhernandez0@gmail.com, steven.mcdonagh@huawei.com



Bayesian formulation

- Idea: account for unknown surface reflectances and scene illuminant using a probabilistic generative model
- Model the posterior distribution of illuminants ℓ , given the input image Y:

$$P(\boldsymbol{\ell} \mid Y) = \frac{P(Y \mid \boldsymbol{\ell}) P(\boldsymbol{\ell})}{P(Y)}$$

- Assuming illuminant and surface reflectance are independent allows decomposition and separate modelling of the factors
- Model the likelihood of an observed image Y, given illuminant ℓ as:

$$P(Y \mid \boldsymbol{\ell}) = \int_{r} P(Y \mid \boldsymbol{\ell}, R = r) P(R = r) dr = P(R = \text{diag}(\boldsymbol{\ell})^{-1}Y)$$
$$P(Y \mid \boldsymbol{\ell}, R = r) \text{ only non-zero for } R = \text{diag}(\boldsymbol{\ell})^{-1}Y$$

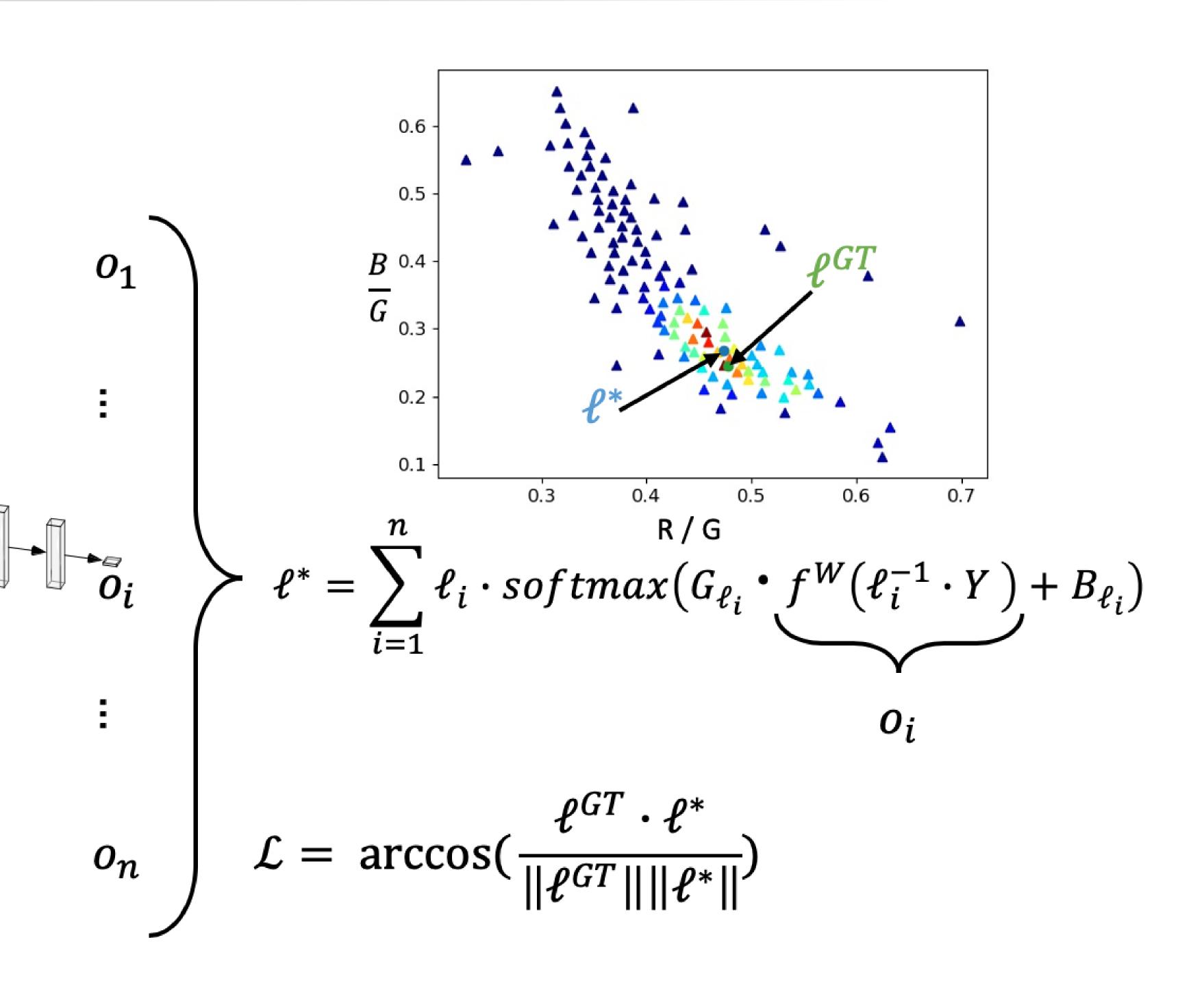
- Intuition: The likelihood rates whether an image, corrected under ℓ , *looks realistic* in terms of achromaticity
- Estimate ℓ^* by optimising the quadratic cost (min. MSE Bayesian estimator)

$$\boldsymbol{\ell}^* = \int_{\boldsymbol{\ell}} \boldsymbol{\ell} \cdot \mathrm{P}(\boldsymbol{\ell} \mid Y) \, d\boldsymbol{\ell}$$

Method instantiation:

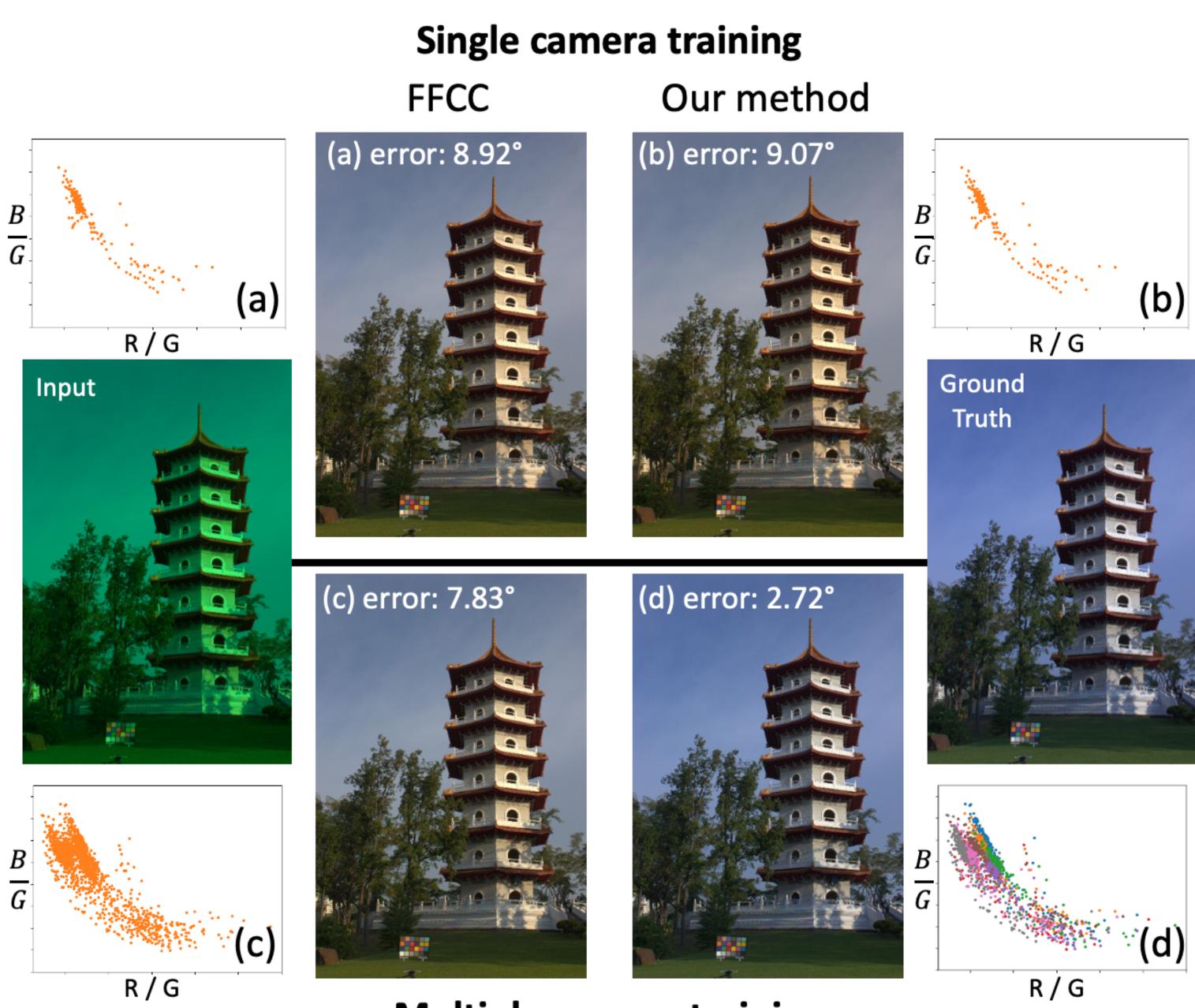
- Select a representative set of *n* candidate illuminants *e.g.* cluster training set illuminant labels ℓ
- 2 Generate *n* illuminant-corrected images $\ell_i^{-1} \cdot Y$. Train model f^W to estimate the **likelihood** o_i that $\ell_i^{-1} \cdot Y$ exhibits an achromatic light source
- 3 Linearly combine candidate illuminants ℓ_i , weighted by estimated posterior probabilities, to produce final illuminant estimate ℓ^*

Overview



Multi-camera training

- Model f^W provides likelihood o_i that an image is well white balanced: a **device-independent** learning task
- Illuminant candidates are camera-specific yet the strategy allows updating of a single set of model parameters W during training
- Typically *small* color constancy training sets can be amalgamated across capture devices towards larger data improving f^W prediction quality



Multiple camera training

VPR SEATTLE WASHINGTON JUNE 16-18 2020

Angular-Error statistics (lower better)

Method	Mean	Median	Trimean	Best 25%	Worst 25%			
One model per device								
FFCC [3] (model Q)	2.37	1.50	1.69	0.46	5.76			
Ours (pretrained)	2.35	1.48	1.67	0.47	5.71			
Multi-device training								
FFCC [3] (model Q)	2.59	1.77	1.94	0.52	6.14			
Ours (pretrained)	2.22	1.33	1.53	0.44	5.49			
—								

Table: Angular error for NUS data set using multi-device cross-validation folds

Method	Mean	Median	Trimean	Best 25%	Worst 25%		
FFCC [3] (model J)	2.10	1.23	1.34	0.47	5.38		
WB-sRGB $[2, 1]$	1.83	1.15	_	0.35	4.60		
Ours	1.99	1.06	1.14	0.35	5.35		
Table: Angular error for Cube challenge data set							

able: Angular error for Cube challenge data set

*Please see our paper for unabridged quantitative results

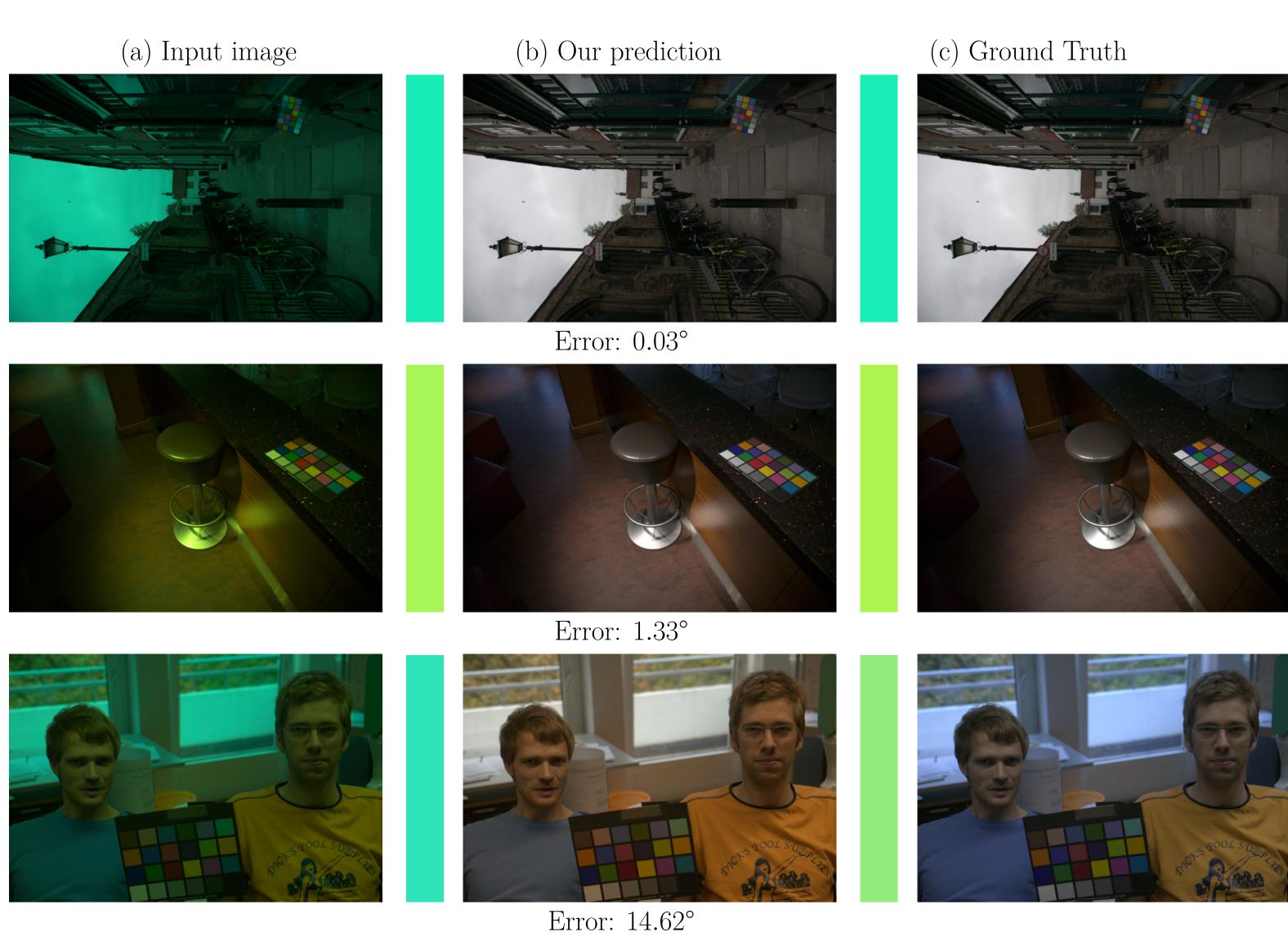
Training-free camera adaptation

- Train using amalgamated NUS and Gehler-Shi datasets
- Select candidates from Cube+ and test on separate Cube challenge datasets
- No test camera imagery seen during training

Method	Mean	Med.	Tri.	Best 25%	Worst 25%
Afifi et al. 2019 [1]	2.89	1.72	_	0.71	7.06
Ours	2.07	1.31	1.43	0.41	5.12

Table: Angular error for Cube challenge trained solely on NUS and Gehler-Shi. Candidate selection from separate Cube+ dataset

Qualitative results



Gehler-Shi test images. Results sorted by increasing angular-error and sampled uniformly to select displayed images

References

[1] M. Afifi and M. Brown. Sensor-Independent Illumination Estimation for DNN Models. In *BMVC*, 2019.

- [2] M. Afifi et al. When color constancy goes wrong: Correcting improperly white-balanced images. In CVPR, pages 1535–1544, 2019. [3] J. T. Barron and Y. Tsai. Fast fourier color constancy. In CVPR, pages
- 6950-6958, 2017.