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Introduction

•Color constancy: the ability to account for scene light source color

•Allows extraction of color-unbiased surface information, essential for
down-stream computer vision tasks

•Neural networks provide state-of-the-art performance for estimation of
scene illuminant `

•Problem 1: regression to illuminant point estimates do not account for
multiple plausible solutions

•Problem 2: state-of-the-art learning methods are often camera-dependent
yet labelled datasets are expensive to collect and typically small

•Proposal: a multi-hypothesis strategy to handle color constancy
ambiguity and afford camera-agnostic training

Contributions

•Decompose the problem: multi-hypothesis three stage approach

•Multi-camera learning strategy that improves accuracy over
single-camera training

•Training-free model adaptation to new capture devices

•Fast method that achieves state-of-the-art accuracy

Modelling Color Constancy

Assumption: the scene is illuminated by a single or dominant light source

Goal: given input image Y , estimate the global illumination color

•Let y = (yr, yg, yb) be a pixel from image Y in linear RGB space

•Model pixel observations as the product of surface reflectance
r = (rr, rg, rb) and global illuminant ` = (`r, `g, `b):

yk = rk · `k for k ∈ {r, g, b}.

•Estimate ` in order to recover surface reflectances R = diag(`)−1Y

•Enables generation of identical content yet achromatic appearance

But:

• Ill-posed problem: infinitely many combinations of illuminant and
surface reflectance can generate an identical pixel observation

•Point estimates for ` do not offer any information regarding likely
alternative solutions

•Directly estimating ` is inherently camera-specific due to camera spectral
sensitivities

Overview

Bayesian formulation

• Idea: account for unknown surface reflectances and scene illuminant using
a probabilistic generative model

•Model the posterior distribution of illuminants `, given the input image Y :

P( ` | Y ) = P( Y | ` ) P(`)
P(Y )

.

•Assuming illuminant and surface reflectance are independent allows
decomposition and separate modelling of the factors

•Model the likelihood of an observed image Y , given illuminant ` as:

P( Y | ` ) =
∫
r
P( Y | `, R = r) P(R = r) dr = P(R = diag(`)−1Y )

P( Y | `, R = r ) only non-zero for R = diag(`)−1Y

• Intuition: The likelihood rates whether an image, corrected under `,
looks realistic in terms of achromaticity

•Estimate `∗ by optimising the quadratic cost (min. MSE Bayesian
estimator)

`∗ =
∫
`
` · P( ` | Y ) d`

Method instantiation:
1 Select a representative set of n candidate illuminants e.g. cluster
training set illuminant labels `

2 Generate n illuminant-corrected images `−1
i · Y . Train model fW to

estimate the likelihood oi that `−1
i · Y exhibits an achromatic light source

3 Linearly combine candidate illuminants `i, weighted by estimated
posterior probabilities, to produce final illuminant estimate `∗

Multi-camera training

•Model fW provides likelihood oi that an image is well white balanced: a
device-independent learning task

• Illuminant candidates are camera-specific yet the strategy allows updating
of a single set of model parameters W during training

•Typically small color constancy training sets can be amalgamated across
capture devices towards larger data improving fW prediction quality

Angular-Error statistics (lower better)

Method Mean Median Trimean Best 25% Worst 25%
One model per device
FFCC [3] (model Q) 2.37 1.50 1.69 0.46 5.76
Ours (pretrained) 2.35 1.48 1.67 0.47 5.71
Multi-device training
FFCC [3] (model Q) 2.59 1.77 1.94 0.52 6.14
Ours (pretrained) 2.22 1.33 1.53 0.44 5.49

Table: Angular error for NUS data set using multi-device cross-validation folds

Method Mean Median Trimean Best 25% Worst 25%
FFCC [3] (model J) 2.10 1.23 1.34 0.47 5.38
WB-sRGB [2, 1] 1.83 1.15 - 0.35 4.60
Ours 1.99 1.06 1.14 0.35 5.35

Table: Angular error for Cube challenge data set

*Please see our paper for unabridged quantitative results

Training-free camera adaptation

•Train using amalgamated NUS and Gehler-Shi datasets

•Select candidates from Cube+ and test on separate Cube challenge datasets

•No test camera imagery seen during training

Method Mean Med. Tri. Best 25% Worst 25%
Afifi et al. 2019 [1] 2.89 1.72 - 0.71 7.06
Ours 2.07 1.31 1.43 0.41 5.12

Table: Angular error for Cube challenge trained solely on NUS and Gehler-Shi. Candidate
selection from separate Cube+ dataset

Qualitative results

(a) Input image (b) Our prediction (c) Ground Truth

Error: 0.03°

Error: 1.33°

Error: 14.62°
Gehler-Shi test images. Results sorted by increasing angular-error and sampled uniformly to
select displayed images
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