Daniel Hernández-Juárez*, Lukas Schneider*, Antonio Espinosa, David Vázquez,

Antonio M. López, Uwe Franke, Marc Pollefeys and Juan C. Moure

UAB **Universitat Autònoma** de Barcelona

Slanted Stixels: Representing San Francisco's Steepest Streets

* Contributed equally

Stixel World: Compact representation of the world

Stereo + Horizon Line + Road Slope

Stereo Images

Fixed width stixels, variable number of stixels per column

Widespread in stereo vision for automotive industry

Stixel = Stick + Pixel

Stixels

Motivation & Objectives

Left Image

Original Stixels

Previous work:

- Stixel World [Pfeiffer 2011]
- Semantic Stixels [Schneider 2016]

Problem:

Slanted roads not well modeled

Contribution:

- New model to represent slanted roads
- Proposal to reduce computational work

Semantic Stixels: Unified approach

Stereo + Horizon Line + Road Slope

Semantic segmentation

Stereo Images

Semantic Stixels

Stixels: Original Model

Stixel models:

- Sky: 0 dispari
- **Object**: Disparity
- Ground: Precomp

Unified probabilistic approach:

Enforces constraints:

Computed independently for each column

ty	Assumption: Far away
' mean	Assumption: Constant distance
outed model	Assumption: Constant height

Disparity term considers the accordance of measurements to model Semantic energy favors classes that fit to the observed input

no sky below horizon, no neighbors objects at same disparity ...

- New model to represent all classes: •
- With priors according to the class: lacksquare
- \bullet
- Optimized jointly with Semantic Stixel probabilistic framework \bullet

$$\mu(s_{i}, v) = b_{i} * v + a_{i}$$

$$E_{plane}(s_{i}) = \left(\frac{a - \mu_{c_{i}}^{a}}{\sigma_{c_{i}}^{a}}\right)^{2} + \left(\frac{b - \mu_{c_{i}}^{b}}{\sigma_{c_{i}}^{b}}\right)^{2} - \log(a)$$

Each class has different parameters: slanted ground and objects and 0 disparity for sky

New dataset: SYNTHIA-San Francisco

- Generated with SYNTHIA toolkit to evaluate our algorithm, features slanted roads
- Photorealistic virtual sequence (2224 images), pixel-level depth and semantic ground truth
- Expensive to generate equivalent real-data sequence

ht	traffic si	ign	bicycle		motorcy	cle	ro	ad lir
k	bus	tra	in	fence	person	sł	cy	с

Results: Disparity Error

Metric	Dataset	Original	Ours
	Ladicky	17.3	16.9
Disp Err (%)	KITTI 15	10.9	11.0
	SYNTHIA-SF	30.9	12.9

• Much better accuracy for slanted road sequence, similar for others

Lower is better

Results: Semantic segmentation IoU

Metric	Dataset	Original	Ours
	Ladicky	17.3	16.9
Disp Err (%)	KITTI 15	10.9	11.0
	SYNTHIA-SF	30.9	12.9
	Ladicky	63.5	63.4
loU (%)	Cityscapes	65.7	65.8
	SYNTHIA-SF	46.0	48.5

• Better accuracy for slanted road sequence, similar for others

Results: Frame-rate

Metric	Dataset	Original	Ours
	Ladicky	17.3	16.9
Disp Err (%)	KITTI 15	10.9	11.0
	SYNTHIA-SF	30.9	12.9
	Ladicky	63.5	63.4
loU (%)	Cityscapes	65.7	65.8
	SYNTHIA-SF	46.0	48.5
	KITTI 15	113	61
Frame-rate	Cityscapes	20.9	6.6
(Hz)	SYNTHIA-SF	19.4	4.7

• Our version is slightly slower because of the increased complexity

Stixels time measured on 6-core Intel i7

Stixel Computation Complexity: Dynamic Programming

First-order Markov property: Only pair-wise Stixel relations are taken into account

Combinatorial explosion (of possible configurations): Dynamic programming to evaluate efficiently

Stixel Computation Complexity: Presegmentation

- Infer possible Stixel cuts (presegmentation) from image
- Avoid checking all possible Stixel combinations
- If given the correct Stixel cuts, same accuracy (or better!)
- on) from image nations uracy (or better!

Presegmentation Results: Disparity Error

				Presegmentation		
Metric	Dataset	Original	Ours	Original	Ours	
Disp Err (%)	Ladicky	17.3	16.9	18.5	17.8	
	KITTI 15	10.9	11.0	11.8	11.7	
	SYNTHIA-SF	30.9	12.9	33.9	15.4	

• Depth error is higher because we do not check all combinations

Lower is better

Presegmentation Results: Semantic segmentation IoU

				Presegmentation		
Metric	Dataset	Original	Ours	Original	Ours	
	Ladicky	17.3	16.9	18.5	17.8	
Disp Err (%)	KITTI 15	10.9	11.0	11.8	11.7	
	SYNTHIA-SF	30.9	12.9	33.9	15.4	
loU (%)	Ladicky	63.5	63.4	63.9	63.7	
	Cityscapes	65.7	65.8	65.7	65.8	
	SYNTHIA-SF	46.0	48.5	46.9	48.5	

• The same semantic segmentation accuracy is maintained

Presegmentation Results: Frame-rate

				Presegme	entation
Metric	Dataset	Original	Ours	Original	Ours
	Ladicky	17.3	16.9	18.5	17.8
Disp Err (%)	KITTI 15	10.9	11.0	11.8	11.7
	SYNTHIA-SF	30.9	12.9	33.9	15.4
	Ladicky	63.5	63.4	63.9	63.7
loU (%)	Cityscapes	65.7	65.8	65.7	65.8
	SYNTHIA-SF	46.0	48.5	46.9	48.5
	KITTI 15	113	61	120	116
Frame-rate (Hz)	Cityscapes	20.9	6.6	36.6	27.5
	SYNTHIA-SF	19.4	4.7	38.9	33.1

• Presegmentation speeds up both original and Slanted Stixels

Presegmentation Results: Frame-rate

				Presegme	entation
Metric	Dataset	Original	Ours	Original	Ours
	Ladicky	17.3	16.9	18.5	17.8
Disp Err (%)	KITTI 15	10.9	11.0	11.8	11.7
	SYNTHIA-SF	30.9	12.9	33.9	15.4
	Ladicky	63.5	63.4	63.9	63.7
loU (%)	Cityscapes	65.7	65.8	65.7	65.8
	SYNTHIA-SF	46.0	48.5	46.9	48.5
	KITTI 15	113	61	120	116
Frame-rate (Hz)	Cityscapes	20.9	Up to 2x	36.6	27.5
	SYNTHIA-SF	19.4	4.7	38.9	33.1

Presegmentation Results: Frame-rate

				Presegme	entation
Metric	Dataset	Original	Ours	Original	Ours
	Ladicky	17.3	16.9	18.5	17.8
Disp Err (%)	KITTI 15	10.9	11.0	11.8	11.7
	SYNTHIA-SF	30.9	12.9	33.9	15.4
	Ladicky	63.5	63.4	63.9	63.7
loU (%)	Cityscapes	65.7	65.8	65.7	65.8
	SYNTHIA-SF	46.0	48.5	46.9	48.5
	KITTI 15	113	61	120	116
Frame-rate (Hz)	Cityscapes	20.9	6.6	Up to 7x	27.5
	SYNTHIA-SF	19.4	4.7	38.9	33.1

Left Image

Visual examples

Original Stixels

Slanted Stixels

Visual example: Avoid emergency break

Left Image

Original Stixels

Slanted Stixels

Summary: Real sequence video

Future work

- Improve presegmentation for better accuracy using a CNN
- Embedded GPU version on NVIDIA Drive PX 2 for autonomous driving

Daniel Hernández-Juárez*, Lukas Schneider*, Antonio Espinosa, David Vázquez, Antonio M. López, Uwe Franke, Marc Pollefeys and Juan C. Moure

> More information: www.cvc.uab.es/people/dhernandez

Autonomous University of Barcelona

